

Less is more

Elke Van Asbroeck Managing Director

- 1. Healthy plant today
- 2. Even healthier in future

- 1. Risks properly controlled
- 2. SVHCs progressively replaced
- = AIM AUTHORISATION (art 55)

Exposure is well controlled

Opportunities to further reduce emissions

Description R&D history

Opportunities to find even better solutions

Balance of impacts "use -applied-for" vs "non-use"

Need?

When

Crit. 1: No consumer exposure and

Crit. 2: Excess risk of all exposure groups < X and

Crit. 3: Excess risk man-via-env < X

What Excess Risk (X) is acceptable?

Comparison 1: German model

Comparison 2:

excess risk of 1:100

Reality Check

Crit. 1: No consumer exposure

Crit. 3: Excess risk man-via-env < 4:100.000

Scale < Y

(excess risks x people) < Y

What is realistic?

Let's take a plant with

- 100 workers
- 1.000 neighbours

x 4: 10.000 y = 0.04 y = 0.04

Scale < Y

(excess risks x people) < Y

$$Y = 0.08$$

Is this high or low???

HH (if all fatal) cost = $0.08 \times 5m$ € = 400.000€

HH (if all fatal) cost for 1yr= 10.000€

Reality Check

Crit. 4: Scale

40

• 100 workers

52.000

• 1.000 neighbours

0,08 based on plant with

Scale VLISCO

= risk x people

= extremely low x 52.000

= 0,0184 << 0,08

Crit. 1: No consumer exposure

<u>and</u>

Crit. 2: Excess risk of all exposure groups < **4:10.000**

<u>and</u>

Crit. 3: Excess risk man-via-env < 4:100.000

<u>and</u>

Crit. 4: Σ (excess risks x # people) < Y

Why? AoA

Description R&D history

Opportunities to find even better solutions

- ✓ Analytical method + Detection limit
- Mass balance
- Procedures (ref.)
- Equipment (minimization emissions)
- ✓ Man-via-env.
- ✓ No consumer exposure

✓ Process description

- Functional criteria
- Long to short list
- Short list assessment
 Risk / techn. & econ. feas / avail.
- Future R&D plan
- Ranking
- ✓ Non-use scenario

✓ Market / Sales

Supply chain

Human health impact

Environmental impact

Economic Impact

Social Impact

✓ Wider Econ. Impact

Distributional Impact

/ Compare Benefits & risks

Length review period

- Analytical method + Detection limit
- Mass balance
- Procedures (ref.)
- Equipment (minimization emissions)
- ✓ Man-via-env.
- ✓ No consumer exposure

✓ Process description

- Functional criteria
- Long to short list
- Short list assessment
 Risk / techn. & econ. feas / avail.
- ✓ Future R&D plan
- Ranking
- ✓ Non-use scenario

/ Market / Sales

Supply chain

Human health impact

/ Environmental impact

/ Economic Impact

/ Social Impact

/ Wider Econ. Impact

/ Distributional Impact

Compare Benefits & risks

Length review period

- Analytical method + Detection limit
- Mass balance
- Procedures (ref.)
- Equipment (minimization emissions)
- ✓ Man-via-env.
- ✓ No consumer exposure
- # people exposed

✓ Process description

- Functional criteria
- Long to short list
- Short list assessment
 Risk / techn. & econ. feas / avail.
- Future R&D plan
- Ranking
- ✓ Non-use scenario

/ Market / Sales

Supply chain

Human health impact

/ Environmental impact

/ Economic Impact

/ Social Impact

/ Wider Econ. Impact

/ Distributional Impact

/ Compare Benefits & risks

Length review period

How can you support improvement?

Realistic Dose response curve / DNEL

- ✓ Timing! As of inclusion in Annex XIV
- ✓ For all endpoints

List of required elements

Clear dossier quality standard

Fast decision making

✓ Business certainty

30% cost reduction

Quality label best in class

Concise to evaluate for RAC/SEAC

Drives improvement

Passion

to drive improvement together with our clients

Berten Pilstraat 4 2640 Mortsel Belgium

+32/3.808.20.67 elke.vanasbroeck@apeiron-team.eu